If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+3k-10=0
a = 8; b = 3; c = -10;
Δ = b2-4ac
Δ = 32-4·8·(-10)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{329}}{2*8}=\frac{-3-\sqrt{329}}{16} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{329}}{2*8}=\frac{-3+\sqrt{329}}{16} $
| |14x-2|=14 | | 21x=10x+12 | | (2x+4)·(7x-8)=× | | 5p+p=12 | | 7^x=350/8 | | a+a*7=50 | | (h+6)h=112 | | 22²=6²+2×12×s | | 2x-5+3x-5=50 | | (3x+11)^5*(x+5)^2*(2x-1)^3+(3x+11)^4*(x+5)^4*(2x-1)^3=0 | | (3x+11)^5*(x+5)^2=0 | | 1/16(20-3a)=5/16a-3/4 | | 2x55=360 | | x^2=13.6 | | x²=13.6 | | 3^x=(3^2)/7 | | |7xx36x|=36 | | 8y+9-y=0 | | 2(3b^2)=864 | | 5x^2=270x | | 9=10x10 | | 5k²-90=140 | | 7-(2x+3)=42 | | 308=w^2 | | 320=(w+8)(w+4) | | X^2-31x-276=0 | | 3·(x+5)=21 | | 16=-2(b+12) | | x=7+27x-16X^2 | | 14=x/2+8 | | 4((2x+1)=6x-12 | | -75=12x-5x^2 |